
The inverse-square law of force and its spatial energy distribution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 3649

(http://iopscience.iop.org/0305-4470/13/12/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 3649-3655. Printed in Great Britain 

The inverse-square law of force and its spatial energy 
distribution 

Harold Aspden 
IBM United Kingdom Ltd, Hursley Laboratories, Hursley Park, Winchester, UK 

Received 30 January 1979, in final form 30 June 1980 

Abstract. Using generalised mathematical considerations the inverse-square law of force is 
shown to imply specific spatial energy distributions relative to the interacting bodies. ‘The 
retardation effects associated with energy redeployment when the bodies are in motion are 
examined. It is found that, as applied to the gravitational interaction between sun and 
planet and provided there is no discontinuity in the spatial energy distribution, retardation 
will give a law of motion conforming with Einstein’s law of gravitation. A necessary 
condition is that the energy in transit in the field system is ineffective in determining force for 
R retardation period equal to the time required for a photon to travel from one body to the 
field and then return from the field to the other body. The implication is that gravitation 
cou!d be a quantum interaction which assures causality and balance of action and reaction 
by this dual photon exchange interaction. 

1. Introduction 

Much of accepted field theory is based upon the experimental foundation of Coulomb’s 
law and the observed propagation of electromagnetic waves. Maxwell’s equations 
provide a well tested starting point in field theory, and are all the more secure because 
they have not needed to be modified by the requirements of the theory of relativity. 
This property of Maxwell’s equations is linked with their linearity. The fields they 
represent can be superimposed and added vectorially. Had the equations contained 
second-order terms, signifying energy density parameters, then the impact of relativity 
may well have been a different story. 

In contrast, Coulomb’s law or Newton’s law of gravitation both depend upon 
interactions which are second order in this sense and both present difficulties when 
extended to relate to dynamic interactions. Energy has an enigmatic role in field theory, 
particularly when one tries to analyse the energy radiation from individually 
accelerated charge. 

Our object in this paper is to approach the general problem of the dynamic 
interaction of bodies which are subject to an inverse-square of distance law of mutual 
force, but without adopting any field hypothesis. We will be guided by Brillouin (1970), 
who endorsed a statement by Heaviside: ‘To form any notion at all of the flux of 
gravitational energy, we must first localise the energy.’ Accordingly, our sole consi- 
deration will be the energy we associate with the interaction, taking energy as a scalar 
quantity and so avoiding the complications of the vector field. 
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2. General energy formula 

Our task is to derive a general formula f ( r )  for the distribution aE/ar denoting the 
element of energy aE distant r from a body A and contained within a spherical shell of 
thickness ar centred on that body. We know that the body A is urged towards a second 
body B, distant x from A, by a force given by 

F = K/x2. (1) 

K is a constant which can be positive or negative for Coulomb interaction, but which is 
invariably positive for gravitational interaction. 

The force F can be expressed as a partial derivative of the energy E governing the 
interaction, with respect to the separation distance x. Thus 

This also assures that action balances reaction, there being a mutual force of strength F 
asserted on A and B. 

Introducing r, this becomes 

Our problem then is to determine the general solution for f ( r )  which brings (3) into 
accord with (1). Note that f ( r )  is a function of both r and x, and so can be regarded as a 
function of r or x taken together with terms in x / r  or terms in r / x .  The energy E under 
consideration is finite, for a finite value of x. Hence we can expectf(r) to be represented 
by a convergent power series in x / r  when x is smaller than r or a convergent power 
series in r / x  when r is smaller than x. This follows from Maclaurin's theorem. It may 
then be shown that a general solution bringing (1) and (3) into conformity is 

aE 1 
f ( r )  = - = 7 ar x a , ( r / x ) "  (4) 

where the summation applies to all integral values of n. The coefficients a, then need to 
be determined. 

With n = 0 or n = -1 we must have a,  = 0, because the integral in (3) would 
otherwise be infinite. Similarly, to avoid infinite terms in (4), we must have a, = 0 for 
n <-1 over the range O<r<x  and for n > O  over the range x < r  < W .  

3. Physical criteria governing spatial energy distribution 

The function f ( r )  can be restricted by the condition that it is invariable with x beyond a 
certain distance commensurate with x. This asserts that the force action is local to the 
energy in the immediate environment of the two interacting bodies. In making this 
assertion one must depart from the idea embodied in the Mach principle that remote 
stellar matter determines gravitational interaction locally. Our hypothesis is that force 
is connected solely with the interaction energy local to the two interacting bodies. 
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Formulating the above condition: 

- ( - ) = 0  a aE 
ax ar 

for all r, when r is appreciably greater than x.  
Restricting ourselves to this latter range, we combine (4) and (5) to obtain 

Evidently n is -2 and all other a, values applicable for r greater than x must be zero. 
This result is consistent with an argument that the applicable law of force must be 

dependent upon processes which somehow correlate with the symmetry of space. For 
example, a symmetrical radial emission from a point source has an intensity which 
diminishes inversely as the square of distance from the source. Such an action suggests 
that only one term in n would apply in a general formulation such as (4), as it seems 
unlikely that a multiplicity of physical actions could be involved in the same region of 
space, each action having a different symmetry connection and corresponding to a 
different term in n. Probably, therefore, the expression f ( r )  will contain but a single 
( r / x ) ,  term over a given region of space, as we find for x < r < 03. 

Logically, one would not expect a physical action to change abruptly at some 
arbitrary distance from a reference body. If the form of f ( r )  changes, it should be at a 
distance governed by the parameters of the basic two-body system. This implies but 
one transition set by the separation distance x. There is no other distance parameter in 
the problem specified. Hence, we next seek to determine n for the unique term (r /x)"  
applicable for 0 < r < x. 

Since we are considering a spatial energy distribution it is helpful at this stage to 
examine two possibilities. Firstly, case ( a )  for which the interaction energy tends to be 
as close as possible to either body as reference and, secondly, case ( b )  for which the 
interaction energy tends to be as remote as possible from either body as reference. This 
is of interest in as much as there are two basic inverse-square laws, Newton's law of 
gravitation and Coulomb's law, and there is a physical difference which poses 
questions. With gravitation like bodies mutually attract and with electric interaction 
like bodies mutually repel. 

3.1. Solution for case ( a )  interaction 

From (4) and the above argument, the energy distribution f ( r )  is proportional to a single 
term ( r / x ) ,  over the range 0 < r < x and to a single term (r/x)-' for r > x. Since the 
energy has to be as close to the reference body as possible, n must be as low as possible. 
We know that n is a positive integer. Hence n = 1. The resulting. spatial energy 
distribution is shown in figure 1. The figure is drawn to avoid a discontinuity in the 
energy spectrum at r = x, thereby defining a unique solution. 

It will be shown that there are reasons for identifying this particular energy 
distribution with gravitational interaction. 

3.2. Solution for case ( b )  interaction 

This requires the interaction energy to be as remote from the reference body as 
possible. This is the case for the unique solution that there is no energy at all over the 
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Figure 1. Case ( a )  interaction (gravitational form). 

range 0 < r < x ,  the interaction energy all being confined to the space beyond r = x, 
where the term ( r /x ) - ’  applies. The resulting energy distribution is shown in figure 2 .  
Note that we are considering energy averaged over concentric shells of space centred on 
a reference body, and not specific interaction energy densities which do have finite 
positive or negative values within the 0 < r < x range. 

This particular energy distribution may be readily identified with the Coulomb 
interaction by analysis based upon classical field theory. 

Figure 2. Case ( b )  interaction (Coulomb form). 

4. Laws of motion 

So long as the two bodies are relatively at rest and their interaction energy is tixed 
relative to the bodies, it matters not whether the energy distribution has the form set by 
case ( a )  or that set by case (b ) .  Should x change, meaning that the bodies move relative 
to one another, then there is a deployment of energy between the self-energy of the 
bodies and the interaction energy. Kinetic energy i s  exchanged for gravitational 
energy, for example. The figures indicate that in both cases ( a )  and (6) the interaction 
energy does not change beyond x .  Any increase in E is exclusively at x or between 0 
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and x. Energy shed by the reference body and fed to the interaction has, in case (b ) ,  to 
traverse, on average, the distance x to reach the field. For case (a) the distance is, on 
average, gx. 

Now, we have argued that the interaction energy E governs the mutual forces 
between the two bodies. If the bodies are in motion then some energy must be in transit 
at a finite speed, and is unlikely to be effective in contributing to the force. The result is 
a retardation of the force action due to this dynamic adjustment. The quantum 
mechanism of the photon or its gravitational equivalent could well play a part in this 
process, The point of interest, however, is that it does matter whether we have a case 
( a )  situation or a case (b) situation, because the retardation effects differ for the two 
cases. The photon energy traverses different distances. 

When two interacting bodies move relative to one another they both experience an 
exchange interaction with the spatially distributed energy E. A photon travels to or 
from each of them to convey an energy quantum drawn collectively from all parts of 
nearby space as viewed by that body, a view that is in accord with the energy distribution 
shown in figures 1 or 2. If each photon has a characteristic propagation speed, c, then 
the mean distance of energy transfer will be a measure of the retardation of the force 
action involved. There is one basic question that we need to address. Since the photon 
is not travelling directly between the bodies, but travels between the body and 
surrounding space, two photon transfers, one between each body and surrounding 
space, are needed to assure interaction between the bodies. Are these transfers 
simultaneous or sequential? If they occur simultaneously, how does body A know that it 
should move when body B moves? Space is a seat of the energy fluctuations which 
permit the interaction between the bodies. It is a buffer in the process and, as such, time 
is needed to assure a sequential reaction. The photon transfer cannot be simultaneous. 
Thus, in computing the retardation effect upon the law of motion, we will allow for this 
dual journey. 

We proceed to examine how Newton’s law of gravitation is mociified for a state of 
motion according to the energy distribution of case (a). 

First, it is noted that a perturbation relating energy and retardation involves the 
square of the retardation time. In case (a) the retardation time varies for different 
energy elements because they travel different distances, Accordingly, the effective 
retardation is the root mean square of the time for dual photon exchange. Let T be the 
total effective retardation. Then $T is found by root-mean-square averaging based on 
figure 1. Thus 

2 

(iT)* I ’ f ( r )  dr = (r/c)’f(r) dr. 
0 

(7) 

From figure 1 we know that f ( r )  is proportional to r over this range of integration. 
Hence we can solve equation (7) to find 

T2 = 2 ( x / c ) 2 .  (8) 

The most direct way in which to assess the effects of such a retardation for the sun 
and planet system is to calculate the associated gravitational energy deficit, that is the 
amount of energy in transit and so ineffective in asserting force on the planet. 

The centrifugal acceleration f of the planet is v2/x, where o is the orbital velocity in a 
circular orbit of radius x. This acceleration acting for the retardation period T gives a 
measure of the displacement under the central gravitational force corresponding to the 
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deficit energy quantity 

( GMm/x ’) (ifT2). (9) 
Here G is the constant of gravitation, M is the mass of the sun and m is the mass of the 
planet. Newton’s law of gravitation has been used in deriving this result. Now put f as 
u 2 / x  and substitute T from (8). The energy deficit given by (9) becomes 

( GMm/x ) ( U /  c ) *. (10) 

The quantity -GMm/x is the gravitational potential energy of the system. There- 
fore, the effect of retardation, if we assume that gravitation involves a law of force 
conforming with the case ( a )  situation, is to increase G as it applies in Newton’s law of 
gravitation, effectively by the factor 

1 + ( v / c )2 .  (1 1) 
In terms of force, note that conservation of angular momentum renders U inversely 

proportional to x, making the u-dependent energy term inversely proportional to x3, 
This means that, upon differentiation with respect to x to obtain a force expression 
using (2), we find the factor in (1 1) converts to 

1 +3(v/c)’. (12) 
Thus in a force equation the value of G needs to be increased by this factor in order 

to account for retardation effects. This modifies Newton’s law of gravitation 

d2u/d4’fu  = GM/h2 (13) 

d2u/d4’+u = GM/h2+3GM(u2/c2). (14) 

to 

These are laws of motion based on the force relationship and expressed in polar 
coordinates (U, 4 ) .  U is l /x  and h = UX. 

Equation (14) is the law of gravitation which emerges from Einstein’s general theory 
of relativity and is, therefore, consistent with the results of that theory based upon this 
law. 

5. Discussion 

The idea that Newton’s law of gravitation could be modified by retardation effects 
attributable to the finite speed of propagation of gravitational influence is not new. If 
energy has to be transferred to convey changes in gravitational action then a 
modification of the simple law of Newton is to be expected. Gerber (1898), for 
example, in a paper entitled ‘The space and time propagation of gravitation’, derived on 
this basis the same theoretical formula for the anomalous perihelion advance of 
Mercury as later resulted from Einstein’s theory. The correction required gravitation to 
propagate between sun and planet at the speed of light. However, Gerber’s analysis 
was later challenged and presumably discredited when Einstein’s general theory 
appeared; see the papers by Seelinger (1917a, b) and Oppenheim (1917). 

Surdin (1962) has explored the hypothesis that gravitational waves propagated from 
sun to planet at the speed of light are followed by waves reflected back from planet to 
sun, thus doubling the retardation action distance and so modifying the law of motion 
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otherwise expected. However, Surdin’s method of analysis gave a planetary perihelion 
advance only two thirds that obtained by Einstein, this being based upon the theory of 
retarded potential. 

In contrast, it has been shown in this paper that the gravitational action cannot be a 
simple action propagated directly between the interacting bodies. The spatial energy 
distribution suggests that there is energy transfer to and from the surrounding space or 
field system. Einstein’s formula has emerged without any assumptions of the kind made 
in conventional field theory, such as that of retarded potentials. 

On the other hand, certain assumptions are probably inherent in the method of 
analysis presented, and these deserve exploration. However, it is felt that the above 
approach is heuristically reasonable. 

It is hoped by further research to examine the electrodynamic implications of the 
spatial energy distribution for the Coulomb interaction. Preliminary results indicate 
that the convention (Darwin 1920) of regarding electrodynamic interaction as 
comprising a first component involving magnetic vector potentials and a second 
component involving retarded electric potentials could be erroneous. It is difficult to 
reconcile the latter with the spatial energy distribution presented in figure 2. An 
analysis of the spatial distribution of magnetic field energy has been made (Eagles and 
Aspden 1980), but the weakness of this analysis is the use of field theory as the starting 
point. In contrast, we have, in this paper, deliberately avoided the formulae of field 
theory and taken the empirical law of force between the interacting bodies as the 
starting point. Had we used electric field theory, the derivation of the spatial energy 
distribution shown in figure 2 would be quite straightforward (Aspden 1979). What is 
now needed is analysis of the electrodynamic interaction, based upon the empirical law 
of force. The difficulty here is that there is no sure knowledge of this law for interaction 
between isolated charges in motion. This has been well discussed in the literature, 
notably by Moon and Spencer (1954), who have contended that relativistic elec- 
trodynamics leads us away from accepted magnetic field theory in treating this problem. 

It is hoped, nevertheless, that the approach advanced in this paper, of examining the 
spatial distribution of energy required by our theories, will shed some further light on 
this important subject and perhaps help to unify the theories of gravitational and 
electrodynamic interactions. See also the discussion chapter in Aspden (1980). 
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